A Study on Feature Selection Techniques in Educational Data Mining
نویسندگان
چکیده
Educational data mining (EDM) is a new growing research area and the essence of data mining concepts are used in the educational field for the purpose of extracting useful information on the behaviors of students in the learning process. In this EDM, feature selection is to be made for the generation of subset of candidate variables. As the feature selection influences the predictive accuracy of any performance model, it is essential to study elaborately the effectiveness of student performance model in connection with feature selection techniques. In this connection, the present study is devoted not only to investigate the most relevant subset features with minimum cardinality for achieving high predictive performance by adopting various filtered feature selection techniques in data mining but also to evaluate the goodness of subsets with different cardinalities and the quality of six filtered feature selection algorithms in terms of F-measure value and Receiver Operating Characteristics (ROC) value, generated by the NaïveBayes algorithm as base-line classifier method. The comparative study carried out by us on six filter feature section algorithms reveals the best method, as well as optimal dimensionality of the feature subset. Benchmarking of filter feature selection method is subsequently carried out by deploying different classifier models. The result of the present study effectively supports the well known fact of increase in the predictive accuracy with the existence of minimum number of features. The expected outcomes show a reduction in computational time and constructional cost in both training and classification phases of the student performance model.
منابع مشابه
Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملA Geometric View of Similarity Measures in Data Mining
The main objective of data mining is to acquire information from a set of data for prospect applications using a measure. The concerning issue is that one often has to deal with large scale data. Several dimensionality reduction techniques like various feature extraction methods have been developed to resolve the issue. However, the geometric view of the applied measure, as an additional consid...
متن کاملA Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection
K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0912.3924 شماره
صفحات -
تاریخ انتشار 2009